Deep Neural Networks with PyTorch
via Coursera
- Provider
Coursera
- Cost
Free Online Course (Audit)
- Session
Upcoming
- Language
English
- Certificate
Paid Certificate Available
- Effort
9 hours a week
- Duration
7 weeks long
Overview
The course will teach you how to develop deep learning models using Pytorch. The course will start with Pytorch's tensors and Automatic differentiation package. Then each section will cover different models starting off with fundamentals such as Linear Regression, and logistic/softmax regression. Followed by Feedforward deep neural networks, the role of different activation functions, normalization and dropout layers. Then Convolutional Neural Networks and Transfer learning will be covered. Finally, several other Deep learning methods will be covered.
Learning Outcomes:
After completing this course, learners will be able to:
• explain and apply their knowledge of Deep Neural Networks and related machine learning methods
• know how to use Python libraries such as PyTorch for Deep Learning applications
• build Deep Neural Networks using PyTorch
Learning Outcomes:
After completing this course, learners will be able to:
• explain and apply their knowledge of Deep Neural Networks and related machine learning methods
• know how to use Python libraries such as PyTorch for Deep Learning applications
• build Deep Neural Networks using PyTorch
Syllabus
Tensor and Datasets
Linear Regression
Linear Regression PyTorch Way
Multiple Input Output Linear Regression
Logistic Regression for Classification
Softmax Rergresstion
Shallow Neural Networks
Deep Networks
Convolutional Neural Network
Peer Review
Linear Regression
Linear Regression PyTorch Way
Multiple Input Output Linear Regression
Logistic Regression for Classification
Softmax Rergresstion
Shallow Neural Networks
Deep Networks
Convolutional Neural Network
Peer Review