• Provider
  • Cost
  • Session
  • Language
  • Effort
  • Duration

Overview

In this quantum physics course, you will learn about the primary perturbative methods in quantum mechanics: degenerate and non-degenerate time-independent perturbation theory, the semi-classical WKB approximation, time-dependent perturbation theory, the adiabatic approximation, and scattering theory. Together, these approximation methods represent a valuable set of tools that are broadly applicable across almost all of physics. We will use these methods to study a variety of systems that do not admit analytic solutions, including the fine structure of hydrogen, tunneling rates, radiative decay and molecules. We will also investigate the quantum mechanical description of a particle in a magnetic field, and discuss the symmetries associated with multi-particle systems in detail.

This is the final course of a series of courses on edX:
  • 8.04x Quantum Mechanics
  • 8.05x Mastering Quantum Mechanics
  • 8.06x Applications of Quantum Mechanics

The course is based on the MIT course, 8.06: Quantum Mechanics III. At MIT, 8.06 is the final course in a three-course undergraduate sequence in Quantum Mechanics. 8.06 is a capstone in the education of physics majors, preparing them for advanced and specialized study in any field related to quantum physics.

Image source: Gerd Altmann

Syllabus

  1. Time-independent non-degenerate and degenerate perturbation theory
  2. The fine structure of the Hydrogen atom
  3. The semi-classical WKB approximation
  4. Time-dependent perturbation theory
  5. Atoms and light
  6. Charged particles in magnetic fields
  7. The adiabatic approximation
  8. Scattering
  9. Identical particles